How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?

نویسندگان

  • Kenji Suzuki
  • Kunio Doi
چکیده

RATIONALE AND OBJECTIVES To demonstrate that a massive training artificial neural network (MTANN) can be adequately trained with a small number of cases in the distinction between nodules and vessels (non-nodules) in thoracic computed tomography (CT) images. MATERIALS AND METHODS An MTANN is a trainable, highly nonlinear filter consisting of a linear-output multilayer artificial neural network model. For enhancement of nodules and suppression of vessels, we used 10 nodules and 10 non-nodule images as training cases for MTANNs. The MTANN is trained with a large number of input subregions selected from the training cases and the corresponding pixels in teaching images that contain Gaussian distributions for nodules and zero for non-nodules. We trained three MTANNs with different numbers (1, 9, and 361) of training samples (pairs of the subregion and the teaching pixel) selected from the training cases. In order to investigate the basic characteristics of the trained MTANNs, we applied the MTANNs to simulated CT images containing various-sized model nodules (spheres) with different contrasts and various-sized model vessels (cylinders) with different orientations. In addition, we applied the trained MTANNs to nontraining actual clinical cases with 59 nodules and 1,726 non-nodules. RESULTS In the output images for the simulated CT images by use of the MTANNs trained with small numbers (one and nine) of subregions, model vessels were clearly visible and were not removed; thus, the MTANNs were not trained properly. However, in the output image of the MTANN trained with a large number of subregions, various-sized model nodules with different contrasts were represented by light nodular distributions, whereas various-sized model vessels with different orientations were dark and thus were almost removed. This result indicates that the MTANN was able to learn, from a very small number of actual nodule and non-nodule cases, the distinction between nodules (spherelike objects) and vessels (cylinder-like objects). In nontraining clinical cases, the MTANN was able to distinguish actual nodules from actual vessels in CT images. For 59 actual nodules and 1,726 non-nodules, the performance of the MTANN decreased as the number of training samples (subregions) in each case decreased. CONCLUSIONS The MTANN can be trained with a very small number of training cases (10 nodules and 10 non-nodules) in the distinction between nodules and non-nodules (vessels) in CT images. Massive training by scanning of training cases to produce a large number of training samples (input subregions and teaching pixels) would contributed to a high generalization ability of the MTANN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography.

In this study, we investigated a pattern-recognition technique based on an artificial neural network (ANN), which is called a massive training artificial neural network (MTANN), for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography (CT) images. The MTANN consists of a modified multilayer ANN, which is capable of operating on image data direct...

متن کامل

False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.

RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, ...

متن کامل

Suppression of the Contrast of Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Network

We developed a method for suppression of the contrast of ribs in chest radiographs by means of a massive training artificial neural network (MTANN). The MTANN is a trainable highly nonlinear filter that can be trained by using input chest radiographs and the corresponding teacher images. We used either the soft-tissue image or the bone image obtained by use of a dual-energy subtraction techniqu...

متن کامل

Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes.

One of the limitations of the current computer-aided detection (CAD) of polyps in CT colonography (CTC) is a relatively large number of false-positive (FP) detections. Rectal tubes (RTs) are one of the typical sources of FPs because a portion of a RT, especially a portion of a bulbous tip, often exhibits a cap-like shape that closely mimics the appearance of a small polyp. Radiologists can easi...

متن کامل

Extracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy

Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Academic radiology

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2005